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PURPOSE. To assess whether there are any advantages of binoc-
ular over monocular vision under blur conditions.

METHODS. The effect of defocus, induced by positive lenses,
was measured on the pattern reversal visual evoked potential
(VEP) and on visual acuity (VA). Monocular (dominant eye) and
binocular VEPs were recorded from 13 volunteers (average
age, 28 ! 5 years; average spherical equivalent, "0.25 ! 0.73
D) for defocus up to 2.00 D using positive powered lenses.
VEPs were elicited using reversing 10 arcmin checks (4 rever-
sals/s). The stimulus subtended a circular field of 7° with 100%
contrast and mean luminance 30 cd/m2. VA was measured
under the same conditions using ETDRS charts. All measure-
ments were performed at 1 m viewing distance with best
spectacle sphero-cylindrical correction and natural pupils.

RESULTS. With binocular stimulation, amplitudes and implicit
times of the P100 component of the VEPs were greater and
shorter, respectively, in all cases than for monocular stimula-
tion. Mean binocular enhancement ratio in the P100 amplitude
was 2.1 in focus, increasing linearly with defocus to be 3.1 at
#2.00 D defocus. Mean peak latency was 2.9 ms shorter in
focus with binocular than for monocular stimulation, with the
difference increasing with defocus to 8.8 ms at #2.00 D. As for
the VEP amplitude, VA was always better with binocular than
with monocular vision, with the difference being greater for
higher retinal blur.

CONCLUSIONS. Both subjective and electrophysiological results
show that binocular vision ameliorates the effect of defocus.
The increased binocular facilitation observed with retinal blur
may be due to the activation of a larger population of neurons
at close-to-threshold detection under binocular stimulation.
(Invest Ophthalmol Vis Sci. 2011;52:000–000) DOI:10.1167/
iovs.10-6545

Several features of visual perception, such as target detection
and resolution1–3 and motion detection,4,5 are hampered in

the presence of blur. Moreover, although there is a characteristic

attenuation in retinal image contrast and the modulation transfer
function6,7 with increasing amount of defocus blur, its effect on
spatial visual performance is variable, depending on the spatial
characteristics of the target under observation (i.e., spatial fre-
quency content, form, luminance, and color) and the methodol-
ogy or task used. Visual acuity (VA) is more seriously affected by
defocus when using letters than gratings,8 and the loss in contrast
sensitivity with defocus is spatial frequency dependent, being
greater for higher spatial frequencies than for low ones.9–13

The deterioration in retinal image quality with defocus is
dependent on a range of optical factors, such as pupil
size,9,14–16 the Stiles-Crawford effect,17,18 and the type and
amount of coexisting monochromatic and chromatic ocular
aberrations.17–21 Tolerance to defocus is also affected by reti-
nal and neural factors. There is evidence of increased tolerance
to defocus at low luminances.22 Moreover, low-vision patients
can tolerate higher levels of blur than normals.11

The vast majority of the above studies have investigated blur
tolerance under monocular viewing conditions, which cannot
incorporate the neuronal integration of information from the
two eyes. However, there is strong psychophysical evidence
that performance is better under binocular observation. Assum-
ing that the visual system integrates both signal and uncorre-
lated noise from the two eyes, Campbell and Green23 proposed
a physiological model giving a linear binocular summation ratio
(the ratio of binocular to monocular sensitivities) of $2,
greater than that predicted by probability summation.24 Suc-
ceeding psychophysical studies have shown that binocular
overlap enhances contrast sensitivity25–28 and perceived su-
prathreshold contrast,29,30 with the summation ratio for normal
observers being approximately 1.4 ($2)25–28 or higher.29–31 The
improvement in VA with binocular viewing at high contrast is less
evident, ranging from 5% to 13%.26,32–34

The binocular interaction in spatial visual performance has
also been studied using pattern reversal visual evoked potentials
(VEPs). For example, the amplitude in the binocular VEP P100
component (or the visual evoked response [VER]) is 25%–130%
higher than the corresponding amplitude in the better eye or the
mean of the two monocular responses.32,35–42 Binocular facilita-
tion is more pronounced as stimulus contrast increases40,41 and
for small check sizes and midspatial frequencies.36,43 The effect of
binocular stimulation on the P100 latency has been rarely inves-
tigated, showing a weaker effect than the P100 amplitude.36,38

VEPs have also been measured under conditions of retinal
blur. Sokol and Moskowitz44 and Bobak et al.45 found a linear
correlation between prolonged P100 latencies and the amount
of defocus, with the effect being more pronounced the smaller
the size of the checks. Similar results have been shown for the
P100 amplitude.46–48

The aim of this study was to assess whether there are any
advantages of binocular over monocular vision under con-
ditions of blur. To do so, we measured the effect of defocus,
induced by positive lenses, on the pattern reversal VEP and
on high-contrast VA.
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METHODS

Subjects
Thirteen volunteers (4 females, 9 males) with an average age of 28 !
5 years (range, 20–40 years) participated in the study. Exclusion
criteria included spectacle-corrected VA worse than 0.00 logMAR in
each eye, hyperopia & 0.50 D, myopia & 2.00 D, astigmatism & 0.50
D, anisometropia & 0.50 D, abnormal phorias, and any history of
refractive or other ocular surgery. Average spherical equivalent was
"0.25 ! 0.73 D (range: #0.50 to "2.00 D). Verbal consent was
obtained from all participants after they had received an oral explana-
tion of the nature of the study. The study was conducted in adherence
to the tenets of the Declaration of Helsinki and followed a protocol
approved by the University of Crete Research Board.

Procedure
Both VEP and VA measurements were performed at 1.0 m distance,
monocularly (dominant eye) and binocularly, with best spectacle
sphero-cylindrical correction and natural pupils. Eye dominance was
determined by looking through a central hole in an A4 card, held by
the participant in both hands away from the body. During the mon-
ocular measurements the nondominant eye was covered with an eye
patch. Blur was induced using positive spherical powered lenses up to
#3.50 D on top of the subjects’ correction (corresponding to up to
2.50 D defocus at 1.0 m viewing distance) inserted in a trial frame at 12
mm vertex distance. Power intervals were 0.50 D for lenses up to 1.00
and 0.25 D for lenses between 1.00 and 2.50 D. However, since most
subjects showed very noisy monocular VEP responses at 2.50 D defo-
cus, only data up to 2.00 D defocus are presented. The order of
viewing testing (monocular versus binocular) and the test method used
first (VA versus VEP) were randomized.

VEP Recordings
Recordings of VEPs took place in low photopic lighting conditions
(illuminance at cornea was 5 lux) in a sound-attenuated room. Average
pupil diameter was 5.7 ! 0.4 and 5.3 ! 0.4 mm under monocular and
binocular viewing, respectively. VEPs were elicited using reversing 10
arcmin (3 cpd) checks at a rate of 4 reversals/s (2 Hz) with square wave
modulation. Larger check sizes are known to be almost unaffected by
defocus.44,45 The stimulus was displayed on a monitor (Sony GDM
F-520 CRT; Sony, CITY, STATE) by means of a stimulus generator card
(VSG 2/5; Cambridge Research Systems Ltd, Cambridge, UK). The
stimulus subtended a circular field of 7° with 100% contrast and a
constant mean luminance of 30 cd/m2. The circular field was sur-
rounded by a background of the same mean luminance and color
(illuminant C; chromatic coordinates, x % 0.310, y % 0.316). Fixation
was achieved using a centrally placed cross.

VEPs were recorded using silver-silver chloride electrodes. An active
electrode was positioned 10% of the distance between the inion and the
nasion over the vertex and referenced to an electrode placed at Fz with a
ground electrode placed on the forehead. The active and reference elec-
trodes were applied to the head with electrode paste after the area had
been thoroughly cleaned. Trigger synchronization was achieved (CED
1401 “micro”; Cambridge Electronic Design, Cambridge, UK). The wave-
forms were amplified (gain % 10 K) using the CED 1902 (Cambridge
Electronic Design). Amplifier bandwidth was set at 0.5–30 Hz (together
with a 50 Hz notch filter), and signals were sampled at a rate of 1024 Hz
with an analysis time of 0.970 seconds. Data acquisition and averaging
were controlled using the commercial software (Signal v. 3.1; Cambridge
Electronic Design). Each VEP trace was the average of 64 epochs of 1
second duration each, as suggested by the International Society of Clinical
Electrophysiology of Vision (ISCEV).49 Computerized artifact rejection
was performed before signal averaging, according to standard ISCEV
guidelines,50 to discard epochs in which deviations in eye position, blinks,
or amplifier blocking occurred.

Scoring of P100 amplitude and latency was calculated on the
average waveform. It required manual definition of the lowest negative

peak (N75) before P100 peak. Amplitude was scored as the difference
between these two points and latency as the time difference between
P100 peak and stimulus onset.

Visual Acuity Recordings
VA was assessed with the best-spectacle sphero-cylindrical correction
(LogMAR 2000 “new ETDRS” charts; Precision Vision, CITY, STATE) at
1.0 m distance with room lights on (chart background luminance was
70 cd/m2; illuminance at cornea was 75 lux). Average pupil diameter
(measured using a video camera providing a '2.8 magnified image of
the eye) was 4.7 ! 0.4 and 4.2 ! 0.4 mm under monocular and
binocular viewing, respectively. Chart 1 and chart 2 were used for
recording VA of the dominant eye and of both eyes, correspondingly.
All subjects were asked to identify each letter one by one in each line
starting from the upper left-hand letter, and to proceed by row until
they could no longer name correctly at least one letter in a line. They
were instructed to read slowly and guess the letters when they were
unsure. The termination rule for stopping was four or five mistakes on
a line. The experimenter scored correct responses on specially de-
signed data forms. VA was derived from the calculation of missed
letters up to the last readable line.

RESULTS

Figure 1 shows the effect of positive defocus on mean VA for
binocular and monocular vision. There is a strong relationship

FIGURE 1. Upper: mean logMAR acuities at 1.0 m from 13 participants
as a function of defocus under binocular (black circles) and monocular
(gray circles) vision; lower: difference between binocular and monoc-
ular logMAR acuity. Participants wore best spectacle corrections for
distance. The bars indicate !1 SD (upper) and !1 SE (lower). The
equations and the dashed lines show second-order regressions. VA of
50 and 10 letters corresponds to 0.0 and 0.8 logMAR, respectively.
Note that 0.0 D defocus blur at 1 m viewing distance is achieved using
a #1.00 D lens. Moreover, it is possible that subjects may have been
able to accommodate to compensate for the negative defocus.
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between VA and defocus, with VA decreasing by approximately
0.36 logMAR (18 letters) and 0.24 logMAR (12 letters) per diopter
under monocular and binocular viewing, respectively (coefficient
of determination R2 equals 0.99 in both viewing conditions). VA
is better with binocular than with monocular observation (P (
0.01 at all defocus levels; paired Student’s t-test), with the im-
provement being 0.07 logMAR (13%) at 0.00 D defocus and
increasing to 0.26 logMAR (81%) at #1.75 D defocus. The binoc-
ular advantage attenuates at a higher level of defocus (0.19 log-
MAR at #2.00 D and 0.15 logMAR at # 2.50 D). The difference
between binocular and monocular logMAR acuity is fitted with a
second-order regression (R2 % 0.79) (a linear regression results in
a R2 of 0.54). Note that it is possible that subjects may have been
able to accommodate to compensate for the negative defocus
when adding lenses between 0.00 and 1.00 D at the 1.0 m testing
distance.

Figures 2 and 3 show the effect of defocus on the P100
component of the VEP. P100 amplitude decreases with increas-
ing amounts of defocus (Fig. 2), and P100 latency increases
with increasing retinal blur (Fig. 3). The amplitudes and the
implicit times of the P100 component of the VEPs are greater
(P ( 0.05 at all defocus levels; paired Student’s t-test) and
shorter (P ( 0.05 only at 1.00 to 1.75 D defocus; paired
Student’s t-test), respectively, with binocular stimulation than

for monocular stimulation, with these effects becoming greater
as defocus increases. The mean (! SE) of the binocular en-
hancement ratio (the ratio of binocular to monocular ampli-
tude) in the P100 amplitude increases linearly from 2.1 (!0.2)
in focus to 3.1 (!0.6) at #2.00 D defocus. The mean peak
latency is 2.9 ms (!1.7) shorter at 0.00 D defocus with binoc-
ular than for monocular stimulation, with the difference in-
creasing to 8.8 ms (! 3.8) at #2.00 D. The binocular-monoc-
ular difference in VEP latency versus defocus is best fitted with
a second-order polynomial (R2 % 0.98).

Figure 4 compares binocular and monocular VEP ampli-
tudes and latencies of the P100 component for the range of
defocus levels tested with corresponding logMAR acuities. VEP
amplitude is best correlated with the square of VA (R2 % 0.68
and 0.60 for monocular and binocular stimulation, respec-
tively). On the other hand, VEP latency shows a linear corre-
lation with VA (R2 % 0.53 and 0.71 for monocular and binoc-
ular stimulation, respectively).

DISCUSSION

This study shows, for the first time, that binocular vision
ameliorates the effects of retinal blur on spatial visual perfor-

FIGURE 2. Upper: mean amplitude (in !V) of the VEP P100 component
from 13 participants (n % 10 for #2.00 D defocus) as a function of defocus
under binocular (black circles) and monocular (gray circles) stimulation;
lower: mean binocular advantage (ratio) in the VEP P100 amplitude as a
function of defocus. The bars indicate !1 SD (upper) and !1 SE (lower). The
dashed lines form second-order (upper) and linear (lower) regressions. Note
that 0.0 D defocus blur at 1 m viewing distance is achieved using a #1.00 D
lens. Moreover, it is possible that subjects may have been able to accommo-
date to compensate for the negative defocus.

FIGURE 3. Upper: mean latency (in ms) of the VEP P100 component
from 13 participants (n % 10 for #2.00 D defocus) as a function of
defocus under binocular (black circles) and monocular (gray circles)
stimulation; (lower) mean binocular advantage (latency) in the VEP
P100 amplitude as a function of defocus. The bars indicate !1 SD
(upper) and !1 SE (lower). The dashed lines form second-order
regressions. The asterisk indicates significance at the 5% level.
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mance. This was tested using two different performance mea-
sures: suprathreshold responses of the pattern reversal VEP
and high-contrast letter acuity.

It is interesting that binocular facilitation increases with the
amount of induced defocus. The binocular summation ratio in
VEP P100 amplitude was correlated linearly with defocus.
Similarly, VEP P100 latency was prolonged under monocular
compared to binocular stimulation, with the delay being more
pronounced the higher the shift from optimal focus. The bin-
ocular superiority in conditions of blur was also observed in
the VA task (ranging from 1.18 D in focus to 1.81 at 1.75 D
defocus).

An obvious question is: “What are the neural mechanisms
underlying the binocular facilitation under conditions of retinal
blur?” The diminished VEP responses as a function of monoc-
ular defocus can be attributed to optical factors: increased
retinal blur leads to attenuation of image contrast and an
overall loss in its modulation transfer function.6,9,11,20 It is
notable that binocular facilitation, as evaluated with electro-
physiological studies in humans, is more evident as stimulus
contrast decreases40,41 and that the response versus contrast
slopes are steeper under binocular than under monocular ob-
servation.41 The binocular superiority for low contrast stimuli
has also been shown in Vernier acuity.51 There is physiological
evidence52 that, under binocular stimulation, cells in the cat’s
striate cortex show enhanced contrast sensitivity. Moreover,
low (close-to-threshold) contrast detection activates more cor-
tical neurons showing facilitatory interactions.52

All participants in this work were young people with nor-
mal binocular vision. Binocular summation under in-focus con-
ditions decreases with aging, reflecting deterioration in cortical
activity, and/or an increasing interocular difference in spatial
performance, with the better eye dominating the overall visual
performance.28,31,53 Binocular summation is expected to be
hampered in the presence of inhibitory conditions such as
amblyopia.39,54,55

In the absence of blur, the average binocular enhancement
ratio for the amplitude of the VEP P100 component was 2.1.
This agrees with ratios reported in previous electrophysiolog-
ical studies,32,35–42 which ranged from 1.3 to 2.5, varying with
observer, stimulus characteristics, and recording techniques.36

Facilitatory interaction between the signals from the two eyes

is supported by electromyography56 and single-cell electro-
physiology, demonstrating that binocular interactions exist at
the level of single cortical cells57 and that a larger population
of neurons contributes to contrast detection under binocular
stimulation.52 The higher binocular summation ratio found in
this and earlier VEP studies, compared to the typical “neural
summation” ratio of 1.4 ($2) reported in human psychophys-
ical threshold-based work,23,27 may be a result of the different
populations of neurons responsible for threshold and suprath-
reshold perception.58–60 Higher summation ratios have also
been revealed in masking experiments.30,61

In the absence of blur, the improvement in high-contrast VA
with binocular observation was significantly lower than that
occurring for VEPs, on average being 0.07 logMAR in focus
(summation ratio 1.18). Small amounts of binocular interaction
for high-contrast targets have also been reported in previous
studies.26,32,33 with binocular superiority improving over that
predicted by probability summation as letter contrast de-
creased.26

A limitation of this study is that only positive spherical
defocus blur was used and that optical factors, such as pupil
size and accommodation, were not controlled. Usually the
degradation in spatial visual performance is more rapid in the
positive than in the negative direction.15,62–64 This is attrib-
uted to positive spherical aberration, which occurs in most
unaccommodated eyes,65,66 ameliorating the effect of negative
defocus on VA. Intersubject variability in spherical aberra-
tion may account for some of the intersubject variability
observed in the effect of defocus, especially on VEP re-
sponses, since recordings were performed for larger pupil
sizes compared to VA.

Average pupil diameter was smaller under binocular com-
pared to monocular viewing conditions in VA and VEP record-
ings by 0.5 and 0.4 mm, respectively, in close agreement with
a previous study.67 It is expected that a smaller pupil with
binocular vision would have little effect when in focus, but
would result to a better vision for defocus-induced blur. To
estimate the effect of the difference in pupil diameter between
the two conditions on binocular advantage, we used data from
a previous study.68 We calculated that a 0.5 mm reduction in
pupil diameter would explain only 0.02 logMAR of the 0.17

FIGURE 4. Comparison of binocular (black circles) and monocular (gray circles) VEP P100 amplitudes (left) and latencies (right) with logMAR
acuity for 13 participants for all levels of defocus blur. The dashed lines correspond to best-fit second-order polynomials (left) and linear regressions
(right).
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logMAR and 0.19 logMAR superiority of binocular vision at
1.00 and 2.00 D defocus, respectively.

In conclusion, this study has demonstrated that binocular
observation, compared with monocular observation, amelio-
rates the influence of blur on visual performance as measured
by VA and the visual evoked potential. The increased binocular
facilitation observed with retinal blur may be due to the acti-
vation of a larger population of neurons at close-to-threshold
detection under binocular stimulation. Further investigation of
the relationship between binocular facilitation and blur using
other measures of visual performance is needed.
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